Mechanical properties of microtubules explored using the finite elements method.

نویسندگان

  • Sandor Kasas
  • András Kis
  • Beat Michel Riederer
  • Lászlo Forró
  • Giovanni Dietler
  • Stefan Catsicas
چکیده

Microtubules (MTs) are complex protein polymers composed of and tubulin dimers which assemble into threads called protofilaments. Between eight and nineteen protofilaments may form a hollow tube of several micrometers long. The most common MTs, 13 protofilament MTs, have a diameter of 24 nm with a wall about 5 nm thick and a hollow central core about 15 nm in diameter. These dimensions are directly related to the number of protofilaments. MTs are one of the main components of the cytoskeleton and play an essential role in many fundamental physiological processes in the cell. They provide mechanical stability and maintain the cell's shape. Inside cells they act as railways along which motor proteins transport vesicles or organelles. During cell division they form the mitotic spindle, which is responsible for separating chromosomes that carry the genetic code. They can also form complex bundles (cilia and flagella) that can propel sperms and some eukaryotic cells (e.g. , Euglena rostrifera). Microtubules assembled inside cells can be decorated with microtubule-associated proteins (MAPs) that can modify their spatial organization and dynamics. Mechanical properties of MTs largely determine their functions. Quantifying the way they resist mechanical deformation by determining their Young's and shear modulus can permit a better understanding of all the vital physiological mechanisms in which MTs are involved. However, measuring and understanding MTs mechanical properties is not a simple task. Two decades of measurements involving different techniques such as optical tweezers, hydrodynamic flow, atomic force microscope (AFM), 11] and persistence length observations, resulted in values of Young's modulus between 1MPa and 7 GPa. In all of these experiments, microtubules have been bent in some way and modeled as homogeneous, isotropic beams in order to calculate the Young's modulus from the experimental data. [1] M. H. B. Stowell, T. M. McPhillips, D. C. Rees, S. M. Soltis, E. Abresch, G. Feher, Science 1997, 276, 812. [2] H. Michel, J. Deisenhofer, Biochemistry 1988, 27, 1. [3] B. A. Diner, F. Rappaport, Annu. Rev. Plant Biol. 2002, 53, 551. [4] P. Fromme, J. Kern, B. Loll, J. Biesiadka, W. Saenger, H. T. Witt, N. Krauss, A. Zouni, Philos. Trans. R. Soc. London, Ser. B 2002, 357, 1337. [5] J. P. Allen, G. Feher, T. O. Yeates, H. Komiya, D. C. Rees, Proc. Natl. Acad. Sci. USA 1988, 85, 8487. [6] O. El-Kabbani, C. H. Chang, D. Tiede, J. Norris, M. Schiffer, Biochemistry 1991, 30, 5361. [7] A. J. Chirino, E. J. Lous, M. Huber, J. P. Allen, C. C. Schenck, M. L. Paddock, G. Feher, D. C. Rees, Biochemistry 1994, 33, 4584. [8] B. Arnoux, F. Reiss-Husson, Eur. Biophys. J. 1996, 24, 233. [9] U. Ermler, G. Fritzsch, S. K. Buchanan, H. Michel, Structure 1994, 2, 925. [10] E. Abresch, M. L. Paddock, M. H. B. Stowell, T. M. McPhillips, H. L. Axelrod, S. M. Soltis, D. C. Rees, M. Y. Okamura, G. Feher, Photosynth. Res. 1998, 55, 119. [11] J. Deisenhofer, H. Michel, EMBO J. 1989, 8, 2149. [12] J. Deisenhofer, O. Epp, I. Sinning, H. Michel, J. Mol. Biol. 1995, 246, 429. [13] C. R. D. Lancaster, U. Ermler, H. Michel in Adv. Photosynth. 2: Anoxygenic Photosynthetic Bacteria, Vol. 2, Kluwer Academic, Dordrecht, The Netherlands, 1995. [14] C. R. D. Lancaster, Biochim. Biophys. Acta 1998, 1365, 143. [15] C. R. D. Lancaster, Biochem. Soc. Trans. 1999, 27, 591. [16] D. Tiede, Biochemistry 1997, 35, 10763. [17] O. A. Gopta, D. A. Bloch, D. A. Cherapanov, A. Y. Mulkidjanian, FEBS Lett. 1997, 412, 490. [18] J. Li, D. Gilroy, D. M. Tiede, M. R. Gunner, Biochemistry 1998, 37, 2818. [19] E. G. Alexov, M. R. Gunner, Biochemistry 1999, 38, 8253. [20] B. Rabenstein, G. M. Ullmann, E.-W. Knapp, Biochemistry 2000, 39, 10487. [21] H. Ishikita, G. Morra, E.-W. Knapp, Biochemistry 2003, 42, 3882. [22] A. K. Grafton, R. A. Wheeler, J. Phys. Chem. B 1999, 103, 5380. [23] S. E. Walden, R. A. Wheeler, J. Phys. Chem. B 2002, 106, 3001. [24] J. Breton, C. Boullais, C. Mioskowski, P. Sebban, L. Baciou, E. Nabedryk, Biochemistry 2002, 41, 12921. [25] Simulations of the Rhodopseudomonas viridis reaction center also imply that with UQB's head group oriented as in the distal X-ray structure it cannot migrate to the proximal site and the space between protein helices is too restricted to allow head group rotation: U. Zachariae, C. R. D. Lancaster, Biochim. Biophys. Acta 2001, 1505, 280. [26] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne, Nucleic Acids Res. 2000, 28, 235. [27] AMBER 6.0, D. A. Case, D. A. Pearlman, J. W. Caldwell, T. E. Cheatham, III. , W. S. Ross, C. L. Simmerling, T. A. Darden, K. M. Merz, R. V. Stanton, A. L. Cheng, J. J. Vincent, M. Cowley, D. M. Ferguson, R. J. Radmer, G. L. Seibel, U. C. Singh, P. K. Weiner, P. A. Kollman, University of California: San Francisco, CA, 1997. [28] D. A. Pearlman, J. W. Cladwell, W. S. Ross, T. E. Cheatham,III., S. DeBolt, D. Ferguson, G. Seibel, D. A. Case, P. A. Kollman, Comput. Phys. Commun. 1995, 91, 1. [29] W. F. Van Gunsteren, H. J. C. Berendsen, Mol. Phys. 1977, 34, 1311. [30] J. P. Ryckaert, G. Ciccotti, H. J. C. Berendsen, J. Comput. Phys. 1977, 23, 327. [31] M. L. Paddock, P. Aedelroth, G. Feher, M. Y. Okamura, J. T. Beatty, Biochemistry 2002, 41, 14716. [32] A. Mezzetti, E. Nabedryk, J. Breton, M. Y. Okamura, M. L. Paddock, G. Giacometti, W. Leibl, Biochim. Biophys. Acta 2002, 1553, 320. [33] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, Jr. , D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, P. A. Kollman, J. Am. Chem. Soc. 1995, 117, 5179. [34] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, M. L. Klein, J. Chem. Phys. 1983, 79, 926. [35] S. E. Boesch, R. A. Wheeler, J. Phys. Chem. A 1997, 101, 5799. [36] R. A. Wheeler, J. Am. Chem. Soc. 1994, 116, 11048. [37] S. E. Boesch, A. K. Grafton, R. A. Wheeler, J. Phys. Chem. 1996, 100, 10083. [38] R. A. Wheeler, in Molecular bioenergetics: simulations of electron, proton, and energy transfer (Ed. : R. A. Wheeler), American Chemical Society, Washington DC, 2004, in press. [39] WebLab ViewerPro, 4.0 Ed., Molecular Simulations, Inc, San Diego, CA, 2000. [40] C. Simmerling, R. Elber, J. Zhang inModeling of Biomolecular Structure and Mechanisms (Ed. : A. Pullman), Kluwer, Norwell, MA, 1995, pp. 241.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Simulation and Mechanical Properties of Microtubules

This work is conducted to obtain mechanical properties of microtubule. For this aim, interaction energy in alpha-beta, beta-alpha, alpha-alpha, and beta-beta dimers was calculated using the molecular dynamic simulation. Force-distance diagrams for these dimers were obtained using the relation between potential energy and force. Afterwards, instead of each tubulin, one sphere with 55 KDa weight ...

متن کامل

Nanobiomechanical Properties of Microtubules

Microtubules, the active filaments with tubular shapes, play important roles in a wide range of cellular functions, including structural supports, mitosis, cytokinesis, and vesicular transport, which are essential for the growth and division of eukaryotic cells. Finding properties of microtubules is one of the main concerns of scientists. This work helps to obtain mechanical properties of m...

متن کامل

Studying the Mechanical and Thermal Properties of Polymer Nanocomposites Reinforced with Montmorillonite Nanoparticles Using Micromechanics Method

In this study, the mechanical and thermal behavior of the nano-reinforced polymer composite reinforced by Montmorillonite (MMT) nanoparticles is investigated. Due to low cost of computations, the 3D representative volume elements (RVE) method is utilized using ABAQUS finite element commercial software. Low density poly ethylene (LDPE) and MMT are used as matrix and nanoparticle material, respec...

متن کامل

Mixed-Mode Stress Intensity Factors for Surface Cracks in Functionally Graded Materials Using Enriched Finite Elements

Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previou...

متن کامل

Bending, Buckling and Vibration of a Functionally Graded Porous Beam Using Finite Elements

This study presents the effect of porosity on mechanical behaviors of a power distribution functionally graded beam. The Euler-Bernoulli beam is assumed to describe the kinematic relations and constitutive equations. Because of technical problems, particle size shapes and micro-voids are created during the fabrication which should be taken into consideration. Two porosity models are proposed. T...

متن کامل

Mechanical Buckling Analysis of Composite Annular Sector Plate with Bean-Shaped Cut-Out using Three Dimensional Finite Element Method

In this paper, mechanical buckling analysis of composite annular sector plates with bean shape cut out is studied. Composite material sector plate made of Glass-Epoxy and Graphite-Epoxy with eight layers with same thickness but different fiber angles for each layer. Mechanical loading to form of uniform pressure loading in radial, environmental and biaxial directions is assumed. The method used...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemphyschem : a European journal of chemical physics and physical chemistry

دوره 5 2  شماره 

صفحات  -

تاریخ انتشار 2004